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ABSTRACT g ‘,{qq %

As a preliminary step in investigating the dynamics of a collisionless
plasma, a comprehensive literature survey is conducted. Emphasis is placed
on those aspects of the recent theoretical development which may shed light

on a better approximation for the solution of the Vlasov equations.

All relevant equations of classical mechanics, classical electrodynamics,
and hydrodynamics are either displayed in a suggestive manner’ or derived

from fundamental principles and incorporated in the text of this report.

A brief but self-contained review of kinetic theory is given, and the
microscopic hydrodynamical equations are derived on the basis of the Boltzmann

equation for a dilute neutral gas based on a hard sphere model.

Classical statistical mechanics is cast in a form which is particularly
suited for its application to plasma dynamics. Liouville's theorem is
applied to a relativistic electron gas with a positive ion background. The
Vlasov-Boltzmunn Equation is obtained from Liouville's theorem on the basis

of the self-consistent field formalism of Rostoker and Rosenbluth.

The Born-Bogoliubov-Green-Kirkwood-Yvon Hierarchy is derived from the
relativistic Liouville's equation. Corrections to the Vlasov-Boltzmann Equation

in terms of the multiparticle correlation function technique are also discussed.

Some recent results on non-linear oscillations, plasma radiation, and
conductivity will be surveyed in the next report. A generalization of

integral-of-the-motion method to include relativity is also planned.
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CHAPTER ONE

INTRODUCT ION

I-1 Classical Mechanics in Canonical Form

A. Lagrangian Formulation

We consider first a dynamical system consisting of n particles

having coordinates qy (i =1,2,...n) and described by the Lagrangian
(o8, t), (=12 .

The Lagrangian eqﬁations of motion

:é(c\ _3%: __ N
e %_) g0 b2 A

are obtained from Hamilton's principle

S| (g, 4,t)dt =0 A2
with

égé (end points) = O

B. Hamilton's Formulation

The Hamiltonian of a dynamical system of particles is defined

in terms of the generalized coordinates and momenta, and is related to



the Lagrangian by the Legendre transformation

N =Z pig — £ B—{

whiere
’____d/i,
f -
3L, _ 4 s
b =%, (=12-n
1 E)gi
Then

S gt
;ap ( f%x)gl) v 5
and Hamilton's equations of motion are

= O 5 W
ﬁ'_—a&’ 5" op

Comsider next an arbitrary function F{piqiﬁﬁ (with i =1, 2,...n) and

B-2

its time derivative

Z { Jr'E—-fﬂ-f"a——

4

3
Z[gg ’3;;/1 2237 ] +

Introducing the classical Poisson bracket

) W _oF ¥
[F,¥] :;Z{agi 3 0%




we then have

dF _ 2

1.2 Classical Electrodynamics

A, The Maxwell Equations

For the sake of completeness and future reference, let us review
here very briefly some of the basic features of Maxwell's equations. In

Gaussian units these are

. 5, e . T s s = .
where B i3 the magnetic field, E the electric field, J is the curvent
dersicy, and f) is the charge density. 1t follows from the second and

the last of the Maxwell Equations that

V-7 + 9k =

For applications to plasma physics M=1,K=1, and B=H, D = E
the free space approximation is sufficient, for this point, see,
for exsmple, Reference 17,



which is the equation of comtinuity. The electromagnetic fields can be

conveniently expressed in terms of the scalar and vector potentials,

;? and-§>respective1y, and these are defined by the equations

E=VxA, "~ V-B-o0
o A-2

2 2

E'—)____ —750——0/—%—) 7)(

- L 2(VXA)
However, these equations do not define 90 and ?uniquely, For instance,
the gouge transformation
ﬁ—%ﬁlf_/—\) +7A A-13
Y— SO} = Q- —é—%—jé\, N=N\(7 1)

. . o . . ==
WﬁETeJ/X_IS an arbitrary scalar function ot space and time, leaves £ and

-, .
B invariant,

R, Tne Lorentz Gauge and the Coulomb Gauge

The imhomogencous Maxwell equations can be writfen in tevms of
3

the scalsr and vector potentials ss




In view of the freedom implied by the gauge transformation we can choose

V'j‘«? +é%(£= O ( c%omnfg, uﬂcwge)

so as to uncouple the pair of equations B-1, thus:

o
|
o

‘/{?(97&) “l‘gd3 ) J ¥,
e [P |
oI
where t =t - 0 is the retarded time if—E?ftt) and J:kfﬁt) are
given. The Lorenté'gauge (or restricted gauge) transformation is thus
given by
— -/ >
A—s A= K +VA
/_ 1 A
P— =P B-4
2
2p _ 1 DA L

For a derivation see, for example, J. D. Jackson, Classical Electro-
dynamics, pages 183-186.




Another useful gauge is the transverse or Coulomb gauge, defined by

%

V-A=20
The potentials then satisfy the following equations:

2 YA awT
V/?—L CL7

R R -

B-5
2 22y - | 43 /_P_(_fi@_
VP ——4ap, PE L) gd ==Y

- ., ,
where the transverse current Jt is given by

— =z (5, T@#E
el ng’” Eaa

with g — _—
] - \]—,Q, T JJC
and B-6
L--Lv(Y T e) go,
£ AT l?_?/'
with
—_— -—)

¥ P-o, T-o, then $=0,F--¢5 BT

C. The Lorentz Force Equation and Electromagnetic Stress Tensor

The electromagnetic force on a charged particle is given by

the Lorentz force

-

F=4(E++vxE) C~1



From Newton's second law we can write the rate of change of the particle's

momentum as

42 3 (B+:x7)

For a system of charged particles, we have
— - —
ZJCL‘aT[)DE'}'é—IXB] C-2

We have converted the sum over particles to an integral over charge

and current densities for convenience. The particle nature can be recovered

at any stage by making use of delta functions. It is shown in reference (9)

that the Lorentz force equation leads to the conservation of linear momentum,

thus:

d = —

j{[ PM.+ Pﬁc/d] :§ ’?L‘r_r?c/,s C-3
h S

- | [ = — e <> -

=w EE + 85 -4 (a8

>

7 AN AN A A A

I = 66 +C8, ‘f‘%%

>

T :ZAtTt‘J@ =@T'1,J & (Emstech’mwnfim)
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I-3 The Hydrodynamical Equations

The classical hydrodynamical equations for a neutral non-conducting

fluid are
>, , 0
V' (PV ) + 781@ =0 (Equations of Continuity) /
where P = "M‘ =M=nm = density

4

/\/= total number of particles in a volume V
M = mass of each particle,

Pl @ 9V] -0 +F 2

and

(Stokes-Navier Equation)

where

V= macroscopic fluid velocity

‘FF)= @ir—r;,] /éo,t = stress tensor
/ VA

T = P oy 0V St 2+ 2 )

‘L

L)

. Consequently

—> . - > >/ > -"
(a[%t\lﬂv.@j\jzf?—vp+(x+p)V®'V)+/““V27

An elementary demonstration is given in Reference 14.




&> Y]
If 'T’ is diagonal and V'V=0, this becomes Euler's Equation:
= o -
[1i70v] = [
Pl 5 +VIV] = VP + 3
We also have the heat flow equation,

TL%%- (7-7)6 = -—(‘_:ﬁ;D — v.a

or 4

= heat flow tensor

>
Q
<‘:]:?= stress tensor
‘D
S

= deformation tensor

= thermal energy density

I-4, Boltzmann Equation for a Dilute Neutral Gas

A, Boltzmann Equation

We consider a six-dimensional space D6 whose coordinates are

the position and velocity of any molecule in a gas. The coordinate

—=>
vector § of a point P in this space is given by
— > A A
€= (0T

L=/

T The hydrodynamical equations will be derived from an atomistic
point of view in Section I-5B.



>§¢

where

6

o —> =0 .
z §L 7 - U) gi: C. gl >_?~
L=4 //(‘»Sjbdce

The point P determines the state of a single molecule by specifying

its position and velocity.

The number of molecules which are in a volume Tj in this space are

given by the distribution function
F(GH) A =F (PR t)dr & !

The state of the gas can thus be described in terms of the motion of

coordinate points in this space (D6). The velocity of a point in D, is

ORISR L

Thus, each point in D, (corresponding to a molecule in physical space)

6
has a velocity in each of its six coordinates. In the approximation of
a short range molecular force, (i.e. the effective length of molecular
interactions is small compared to the average interparticle distance),
only close particles can collide, and when they do collide, particles

which are in the space part of ?? but not in the velocity part of 'Yj

can collide with particles in “(; « On the other hand, particles in the

10



velocity part of “G but not in the space part of‘?f cannot collide with

particles in q:’due to our assertation of close collision resulting

from the short range force approximation. It is clear that the number

of particles in “(; may be increased or decreased because of collision.

The total time rate of change is given by

T’%Méé - ZgFQC”S +J ot co//,s,mdég'

A

7

=-fza%</:z)ac g+ j(at)calmc{ég

=

6 .
°r —d_f; - _‘Z 'a%L( FZZ/) t (%!;—)Ca/hs}m

1=

= +Z Z)%L(Fii) - <%FE)Collzs/m

ar (C A7) - [OF
aH:Jrv (F¥)+Vy (Fa@) - (St)co//;s;m

B. Collision Term

We next evaluate the collision term explicitly. The number of

—>
collisions that occur between a particle of velocity 7y and one of

— —> —
velocity QJZ , leading to velocities YV’ and Ijz , is given by

F(P) F () d3v d*y; do |77

11



where

d) =

so that

do=1(e)dn , 1©) = —Mﬁ-—l

Sin6de

with the following meanings for the notation used:

differential collision cross section
impact parameter
angle of scattering

solid angle

s I . o AE/ =/
Similarly the number of collisions starting with 7/’ and ]j? , and

— >
leading to U and 1/1 , is

FF@Hd* v d%y do | U=

Assuming elastically interacting particles of identical mass, then
3 —> = 43 3 _/ '—>~_—>/|
A3 42 d o7 | V=T | = dirl Py d o | V-0
The total change in the population of Tg)by collisions is then

(%g)cdgrfv =

_dsm(svj Lo dolrora)-Ror]

T*This follows from the fact that the Boltzmann Equation is invariant
to space inversion and our assumption of a hard sphere model.

12
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o —
and when the interactions are weak so that | is not a function of ¥~

and Zz>is either of the form
- =
~@(¥), o« C=TXBE)

then Boltzmann's Equation is of the form

W TV AT B - | dody] v | FR-FF)

I-5 Hydrodynamical Equations_from Microscopic Point of View

A. Microscopic Transfer Equation

We shall derive the macroscopic hydrodynamical equations from
microscopic point of view (i.e. by using the Boltzmann Equation), so
that the classical hydrodynamical equations can be put on a more rigorous
atomistic basis. We first define an average or expectation value of a

function of velocity, space, and time, as

3
(90,360 fgzd” |
v

1

We note that

so that



Now consider only those functions which depend on7Z?'alone. Then we have
TP = | FP() &
AP = 58| F (V) a
_ >N F
- [drv (o[- T2, )
= VA9 T )+ {nTTHP )

+ Collisiom ferm,

since

\pUTF jﬂ T(FpT)-FPTT] =V | FPU Ly

g%%ﬁ”d"' gcﬁ Vi (oF ) an% &ds (OFa) nga‘Pd -—(n ai%

It is shown in Reference (13) that the average value of the collision

ol rnor 7] a2 s do
(NPT +V-{n )T )~ (n@Tp P )
- -iﬂ%ﬂ-?’-sa’J[F%F'FiJ [7-3%| Py dy do,

We note that
/ /
%0+C)01_C,P-C)Oi

. e (D — 2 .
vanishes if ? is M, MU s ot MU » since mass, momentum and energy

are conserved in elastic collisions.

14



B. Macroscopic Variables

In order to describe the macroscopic variables in terms of the
microscopic variables, we introduce

mass density

-
fluid velocity = </nm[U\

§¢< VRIS

%
thermal velocity = 77 _<_7_117L_1/—2_

N U= {mm)
U)={T-V)=<>-V =0

Il

stress tensor

=PCuUiu; )
external force density ;< N m 2 >
thermal energy density = /}/L< E/m uz, >

Qi= heat flow ==

=M gmu* uz)

5550

A )

.= deformation tensor
7

- 4%

We shall deduce the hydrodynamical equations in terms of the above
definitions.

S I&
Q)L

=m, V3¢ =0

2(med> =28, L4v{P)- o

which is the equation of continuity

15



2
A nm Vi Vi +mm U u3>
G /s T

b
since <’)’Lmui\/>zo </VLWL’]/(J\/1I>:O further

_ . 2% 2 N ¢
Y = 0; < o = 4 a\gmzr ma; ok T ma; S,
=ma; = F:/n
3 on
sefhi = axJ[Ta HPV Y] R

So using the equation of continuity, we have

3 V; e
Pl P =S+ =P 5 Ve (PG
or: WV T
vy AR Al

where - BVL
Vi = 3t

16



or in vector notation $T2==@irr;j%;’ whence
'ax7> —> =2>\—> - -__——9€—§ -—>
Pl L +VIN] = —Tp+F
This is the Stokeanavier equation. When the stress tensor is diagonal,
Ty = P&
NV — L
P2 +@-7) ] -VUp + F_
3+ = Loapy? Y _ <nmv>
¢ 5 MU +7 \/ = R

0 ..._._Qf;m({Zﬂ’/)-(@ﬁ/): g w4yt 4 22y

_ 1L 2 2 — —
) m W +—ZL’mV + m U\

NP, = —Q’V—nmuz-k—z’—nm\/’%mﬁ"&)(uﬁ\/,;)
| 2 2
=g PV +SPVIU + P W +LPUV,
+PU; Vi U, +P U VY
So that:

{nQug) = 2PV*V; +nev + Qi + TV
<%6’%§§>:

and

Whence:

@t[ﬂﬁ%q - é%i[%f’Vng + T3 +Q; +ney] + FV

17



From the equation of motion and the equation of continuity we have
3 VA
SE(BPVY)=PY +pVY
2 —> - ’377‘
=TV (7 - EEN PV G PV

and

g%.(%f’Vl%); LVER(V) + pTTH) L

=€) = T o (né\/ )

n[%%ﬂ"\??)e] =—ﬁ3 D-v-Q

This concludes our review of classical physics.

18




CHAPTER TWO

CLASSICAL STATISTICAL MECHANICS

11«1 Liouville's Theorem

We consider a dynamical system of f degrees of freedom, described

by a conservative Hamiltonian

A= g, g ge5 4o oy 1)

where qi;pi(i =1,2,..,f) are the generalized coordinates and momenta
of the Hamiltonisn. For instance, for a system containing n point
molecules, £ = 3n, and q;3p; are the ordinary position coordinates

and linear momentum components. On the other hand, for a system of

n vibrating rotating diatomic molecules, f = (3+3) n = 6n, owing to

the two rotartional degrees of freedom and one vibrational degree of
frzedom. Then the system is uniquely determined by Hamilton's equations

sf mozion,

e

CrA : AN .

g i = i=12 - f i

Following Ehrenfest, the space of 2f dimensions sz defined by the 95 Py
will be called the [ﬂcspace or phase space, For example, there are 6n
coordinstes for the monoatomic gas, and 12n coordinates for the non-rigid
diatomic gus. The instantaneous state of a system is represented by a
point in this space, und the point describes a trajectory in the rﬂwspace

corresponding to the instantaneous states of the dynamical system at each

19



b

nstant, That this trajectory does not intersect itself is evident
from the fact that Humilton's equation is of first order in time, so
thut there must be only single valued solutions and thus a unique
trajectory through any point. The trajectories of any two points
cannot intersect, because then they would be the same system at the
point of intersection. Then each point has a velocity in this Fuspace,

given by the 2f-dimensional vector:
— —> . . ] ; ;
f\ — _—- - .
J—V(%1)g27 8F)//b17ﬁ.277bf)
which is defined at every point along its trajectory.

if we hsve a point in l_‘-spac.e, corresponding to a given system,
then tne neighborhood around this poinr includes points corresponding
to systems which are very similar to the given system. For instance,
in the case of the momoatomic gas they may be systems in which one
molecule has been displaced by some distance E}% or Sscme momentum gf .
Since “hese hyporhetical displacements may be made as small as we wish,
the mumter of systems within a given volume in t
m:de as large as desired, and consequently we may define a density of
3ystems [O which may be made arbitrarily large; but which is conserved,
since the systems are not destroyed. Therefore, we have an equation of
continuity in the ruspace, i.e.
v)

D ‘ /



wher [‘) = density of systems in ]—'—space (i.e. ensemble density)

2 3 .3 .23 2 .. 2
VP=VF\381aa$Z> ’aZf’ a}’iyaf,z,’ )af.{:)

Velocity of a point which determines the instantaneous state

of a system in r space

i &)52 ')ﬁf; b bor “’i/;f)

(%)) (3% 5%)
( ey 4 ’99?()
[ o

S

'I

t:

)

wnence

~

f

%h hop -'-WF DT
A 7)JO =S =0 3

But i is just the rate of change of density in a £luid that moves at a

g
velocity 7/ . Thus the motion of the phase points in the [_‘-space is

like that of an ircompressible fluid, since

r
\ VT de =7 dF
P ™
dT . 4T _
v dg; S dE0 T dt =0
where

21




Thus the volume G occupied by the phase points in rﬂ-space does not
change, The analogy with an. incompressible fluid can be carried further
by observing that the shape of the volume may change. That this is
obvious can be seen from the example of two systems, the molecules of one
all moving in a parallel direction at a uniform velocity, and the other
having one molecular velocity displaced through a small angle. If there
are perpendicular reflecting walls, the first system will continue in
the same pattern after reflected from the wall, while the second system
will have intermolecular collisions and finally reach some equilibrium
configuration. But no matter how the shape may change the volume encom-

passed by a group of phase points is constant.

in terms of the Poisson bracket defined in Section I-B, Liouville's

theorem can be put in a more convenient form:
. d
L+ ow] - 4-o 4

since

v Vr7 izloc 85 £=Ilta %
i[ WP K a@fb{]
T LG 9h Of: 9

I
o
®

22



I17-2 The H-Theorem and Canonical Ensemble

A fundamental result of kinetic theory and statistical mechanics

is the Boltzmann H-theorem. For a classical system the H-theorem can

be put in the form

where

y
b
TTo-T e
1= =1
is the volume element in (ﬂospace.

The H-theorem can be stated as follows:

Subject to whatever comstraints which may be imposed on the system, the

quantity H approaches a minimum value in the passage of time and remains

at that value for an undisturbed system. The system is then in statis-

tical, or thermodynamic, equilibrium.

For a rigorous treatment for the H-theorem see, for example,

Reference 6.

23



We shail apply the H-theorem to find the equilibrium of the Gibbs

canonical ensemble.

The canonical ensemble is defined by
£

/-%3@ ’dégﬂ. = k' = Constant

, £=1
(vheneg%gis the typical system Hamiltonian), i.e., the average energy

i3 constuant,

The systems of the ensemble may be thought of as interacting very
slightiy with each other so as to be able to exchange energy in such a

way that the energy of the entire ensemble remains constant.

We now minimize H subject to
f
{pr | ¢ b _
o = é?%”d@_a 3a

(1)=0 3b

O
e
C
’ —+
O
~
I
oM [
I

Jf Eg, 3a is multiplied by the Lugrange multiplier——(}+z§;} and

Eg- 3b by , and these are added to the variation of H, i.e.,

L
o

24



and sc, f
H = § Pln f’t[ 45, ZJ(W%%%%E#Q
= b fem T a2

.'C
- E[pT] 4 - Ef 9T
i i=
r—f |
- 4
H-fl)- - e s
ST a5 = ol1) - 0 ~[TT Sfemp )

25



Also, H \1{/_ Iy

we have

%_1/7 89 JQ%WJ __j@§%Wd4§20)

or

5;]}” W—Eg@'f‘ 6

where ——oW jgjg% ’ ' d ; is the work done on the system. Com-

bining Egqs. {53} and (6)

_%H éE‘i‘gV\/ 7

We identify -kH with the entropy of the system, o /k with the

temperasture T, and r\.l[fwith the free energy. Then Eq. (7) becomes

l

(@ _ SE+W . ¢
B/kj,:‘——?i‘) b=—%'—}

$Q ="T58 =& + SW_




| V=E-TS5, dV=(Tds$~Ww)—Tds~SdT
AV = —sW-SdT ——Pdy—SdT ($Q=Tds sw=Piv)
Pz—(;a@lvk:)Tp Sz_%y.

From the H-theorem, we thus have

AH  oH
i -9t SO

and since

S = -4%H

45 25 =0
dt Bt =

The H-theorem is then a statement of the thermcdynamical law that
for an isolated system the entropy tends to a maximum value at equilibrium,
and that the entropy of the universe always increases for irreversible

processes.
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CHAPTER THREE

THE DYNAMICS OF MANY-PARTICLE SYSTEMS

ITI-1 The Method of Self-Consistent Fields

It is well known in atomic physics that an excellent approximation
for solving the many electron atoms is to describe the motion of a given
electron in the atom by assuming that the forces experienced by this
electron are due to the averaging Coulomb fields of the nucleus and all
the other electrons. It is physically reasonable to expect that a simi-
lar method can be applied to a plasma, Thus, the motion of a given
particle in the plasma may be obtained by considering the forces ex-
perienced by this particle due to the externally applied electromagnetic
fields plus the microscopically smoothed fields due to the motions of
all of the other nearby particles in the plasma. This means that instead
of having to solve for the precise orbits of all of the particles in each
other's fluctuating force fields, we need to solve only for the motion
of a typical particle in the microscopically smoothed electromagnetic
fields, The central problem of this approach is to find the partial
differential equations (the Boltzmann-Vlasov equations) that describe
the evolution of the distribution function of a typical particle in time
and that directly involves the smoothed fields. This distribution function
is then formally used to compute the microscopic charge and current densities
present in the plasma. These charge and current densities (which are already
functionals of the electromagnetic fields) are then inserted into Maxwell's

equations to yield a "self-consistent' solution. The resulting mathematical

28



problem is clearly non-linear and very approximate methods of solving

even this self-consistent approximation must be used.

This single particle distribution function contains all the possible
information about the dynamical behavior of the system since differential
equations that involve only physically interesting microscopic observables
may be obtained from the Boltzmann-Vlasov equations in a way similar to
that used for deriving the classical hydrodynamical equations from the
Boltzmann transport equation. However, a closed set of equations cannot
be obtained in this way. For if we take a certain moment of the Boltzmann-
Vlasov equations in order to find out how a given quantity develops in
time, we find invariably that this evolution in time depends on another
higher moment. The customary practice has been to close this sequence
of equations somewhat arbitrarily. The introduction of a set of transport
coefficients and certain phenomenological relations (such as Ohm's Law)
combined with the moment equations will lead to a set of equations known
as the magnetohydrodynamical equations which are still not too easy to

solve in most cases of interest.

ITI-2 Hamilton's Equation for a Charged Particle in External Fields

The Hamiltonian for a relativistic charged particle in an external

field derivable from a scalar and vector potential can be written as

£ =[G ey !
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—->
where 16 is the (generalized) momentum,‘77ajis the rest mass of the

particle, and

e = charge carried by the particle

e}
It

speed of light

the scalar potential of the external field

SIS
i

= the vector potential of the external field

The Hamilton's equations of motion are

—=>

o7

On making use of Eq. 1, the first of equations 2 becomes

47 - Zlc[mer+p-£rYY "+ eql

_ _(P-E7) 7
[+ (B-GRF

since

%Uﬁ —%Ai)2= 2(777:’%/11')&'}' .

Iz fcliows that

| P =Vm + LR 3
T4

_ Y S

e fTe At
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( Now

T = c‘ﬁcp cV(F- SR T

2 [mi+F-ERY

and

| 2 e S >

: Dp- SRV 2f (&R KT (B~ ) [P XT3 €A )
f 3
using the vector identity

| T(AB) = BDE +AWE + BXUXA + AXUXE

VP ER)=27m, Ux[ F—QW)J+QYM T (-

= 2ym K|~ KR +27m P T (-E)
= Wé"e[ TXB + Jﬁ)_’}
because

—> = 5 7 —>
:{7&,7?7 —Y7><¢D=f 0, (qf-‘v*),FZO.
: Therefvre the second of equations 2 gives
d eA | C o Ime >
aﬁ CE TSt et LV v +T TR
_@ﬁ+9,<§?+ TXB + -UT-TA
—CH + £ 7 75)+80W 4
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since

52,?: —_ZC)D— C ot
=t

From equstion 3 we have

dﬁ_ e 44
£ = dg TV Megg TV

Combine equations 4 and 5:

or

CUp +U = it U JE oV VT
2
=§m075§% + sz%% .
Now //
d7 — 4 .
T=—g =62 7 (—2p8)
: T
-1’88 =V
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and

Cv-E =—2/—7’mo ﬂl"]é‘z‘f‘ mwﬁ%—iﬁ?
dv?

and so

R —
CE+STUXB - ?/mof/;% +’”20’U73,?ﬁ ,
—> > >
CT + LB —ST(FB) = ym L
m, d7 — —
el +EVXB — 5 (VE)V
7 e = o>, F e (2R
M~ [1-E" [eE +ETE-SFENT] ¢

which is the Lorentz-Newton equation of motion in relativistic form.

2
In the non-relarivistic limit, i.e., neglecting f? and higher order

TSince }/= ! 5 /+ 9,2,(6?, _ y,z ]

/—,@2
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T terms, Eq. 6 becomes the familiar Lorentz force equation:
—>

JdF — / —
AT ~ e [F +LVxE | 7

TII-3 Liouville's Equation for a Relativistic Charged Particle in an

External Field

The Liouville equation is

O 14, %) =0, F-{Gpt)

where iﬁ is the distribution function or density function, i.e. the

function §D defined before.

Tor a single particle the Poisson bracket becomes

T (ofll ofk)  of ok of 2K
f, %) "Zg% o oy 29?'?;7;3’_25"5? :

Now
W S g F-ER) AP W) T o .
oF o mact+(p- SR Jre ym Y0
where

_1-
f) is the many particle distribution, but :F is a single particle
dlbuflbtulcﬁ function.

3 F=2 B?‘a L =-mfi37 + GAT —ep

fD ywmg1r is the mechanical momentum in the absence of fields.
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We now transform the independent variables according to

=2 - -

Y gt ——7, Pt

? - %)—' "g_ﬂ-}( ?, 'LL) as before.

where

3 .3 2 __ . 3 _ R
oF 9B’ ot T ot ¢ o o
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Carrying out the indicated change of variables, we have
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B ?)F cﬁ 3F+e[—§>+ Px?] C

Eq. 7 is the desired Liouville equation in relativistic form. This
equation may be interpreted as the Boltzmann-Vlasov' equation provided

’ we interpret the single particle distribution function in the self-

] consistent field approximation, and the fields ﬁandg represent the
sums of the external fields and the solution of Maxwell's equations

‘ with charge and current densities expressed in terms of the distribution

function f(% I_Dj‘t) by the formulas
P =Ne\d&PPf(3 7
~ -
T = NGJOL‘gpﬁ/—&—TLm—Z—E‘P ][( Y,]_fo)

| —>
We note that it is equation 7 with the interpretation of B and ? implied

by equation 8 that will be called the relativistic form of the B-V equation.

.‘_

A rigorous demonstration of this assertion will be given in Chapter IV-2.
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We shall return to the detailed proof in Chapter IV for the equivalence

of the B-V equation and the Liouville equation for a single particle

in the self-consistent treatment.

= —
We now transform Eq. 7 from ) ?LL to y* Tf‘“ t .
2 >

formation is clearly given by

The trans-
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I1I-4 Hamilton's Equations for a Many-Particle System

The Hamiltonian for a many-particle system subjected to external

2
fields represented by 7‘?(1'.’,1:) and 90(?,t) is given to order %—2 by the
Darwin Hamiltonian
’ 2 M
4
. / yig &y > Y
% = g 2m; £, ——E'Aé(ﬁ){:) + 4 @,30( )
=/

> =

where 4/ 77 are the momenta and coordinates of the ith particle and
1) ¢

_— —

12? :;z?—-gi . The meanings of the first three terms are obvious. The

fourth term represents the magnetic interactions between the particles.

2

We note that this term, which is of order —%52 compared to the other

terms, cannot be omitted because the effects produced by this term may
actually be quite appreciable if the particles behave in a collective

way so that, for instance, large induced magnetic fields are produced.
2

c2
but rather/this quantity multiplied by the number of particles. Therefore,

In this case the expansion parameter is not actually the quantity

’

for many systems of interest the magnetic interaction term may play a
much more important role than the Coulomb interaction term. This would
happen, for example, if the particles are distributed with uniform density

so that on the average the Coulomb repulsions cancel each other out.
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Hamilton's equations for this many-particle system are

A7 b dE_ H
& og’ & oy CThETON

T

We shall rewrite the Hamiltonian as follows:

H =K +1

K =ty (BSRT +) e

and

V =430 ey 3 (T R

Tt is clear that K is the interaction energy of the individual particles
with the external fields, and V is the interaction energy between the

particles, i.e., Coulomb interaction and magnetic interaction.

To proceed further, we prove the following lemmas:

Lemma 1°
25 _of H__12(%. 21723
ey 5% 2 ap\TH ot
where
> 2> D= > >
_ ﬁ.-@- + z'rz-) ;-.)2; Y: I? _Y_?I
R A

1‘ For simplicity the last terms in the Darwin Hamiltonian, which is
purely relativistic, has been neglected and we have set m, =m,

e, = e.
1
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Proof:

i
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Proof:
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thus:

We are now ready to prove lemma 2°,
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We shall write down Hamilton's equations of motion for the classical

~ many-body problem and show the equivalence of Hamilton's equations

of motion and the Newton-Lorentz equation of motion.

>
_£
c
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A+ 830(?:,19)}
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generalized total momentum of ith particle

vector potential of the externally applied field

scalar potential of the externally applied field

vector potential of internal field produced by all of the
particles except particle 1

scalar potential of internal field resulting from all of
the particles in the plasma except the ith particle.

3K o B (g4 ) + AR R)x Fx (F-ET)
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m SRR+ R - F A E-GY R )

_@(E +Z')+—1rx(§ %))-i‘ {(A+ﬂ)xﬂ_§
+(A+) T A, + FXE, + VR A~

because
N
- o). | F -t A B0,

The last term on the right hand side of the above equation is of order
13

sy iee.
cs
—
m%—%=€(f—§ + g,-)+%?§x(§i+ %:-) +O(-§) ,

because the second term on the left hand side of equation A-1 vanishes

identically. So

7 —> ==>

m%ﬁfe(§+§)+%ﬁx&&+’ )

—> —> - -
where E =‘E(Y-')t) B-:ﬁﬁf)are the given external fields, and g(f,t)
and %(T t) the fields produced by all particles (except the ith),
that is, gand gare the solutions of Maxwell's equations with charge
and current densities given by

PPt - ez S TaH 8(?—?)

L
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N_y

B-Uxd, d-%) | Hras iy

me
—> —>
where the subscript "i" for gi s {B‘. ’ (E etc. has been consistently

dropped.

I11-5 Liouville's Theorem for a Many-Particle System and Its Reduction

We consider in this section the integration of Liouville's equation

for a many-particle system in rﬂ-space.

The fact that Liouville's distribution function chn)is a function
of the coordinates and momenta of all the particles as well as the time
causes not only mathematical complexity but conceptual difficulty as well.
Conceptual difficulty arises primarily because normally we do not think
in terms of distributions in large numbers of particles but rather in
terms of distribution functions that are based on one or possibly two

or three particles.

Moreover, the many-particle distribution function contains a great
deal of information including, for example, interparticle correlations
of various orders. For most physically interesting situations one
anticipates only a very small number of these correlations to play an
important role. Thus, it is clear that Fjvn)should hopefully be reducable
to distribution functions involving only small numbers of particles by
averaging out the coordinates and momenta of the remaining large collection

of particles.
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For simplicity, we consider a system of charged particles of only
one species and that F’m)is symmetric with respect to exchange of the
coordinates and momenta of any two particles. The S-particle distribution
function F'(S)(S<< N) is obtained by averaging over the coordinates and

momenta of the remaining particles, i.e.

N
t=8+i !

where

P =PV @Y R BB BT
N
ﬁdé W i 2ty (4%, 4R N dR,) @A)

3 =St J:S""l
and has the interpretation that the quantity

Hd"; F (t) 40 F®)

is the joint probability at time t that a particular collection of S

vl

?
PUREER
in the ranges dsY; 5 dsr:z )t a‘igrespectively, and with momenta
- >
1) a)“ ‘)_é in the ranges alsﬁ) d‘sﬁz)w-dsﬁ, independent of the locations

and the states of motion of the remaining/\/-g particles.

particles will be located (in physical space) at positions Yj)

We have shown in Section ]I"l that Liouville's theorem for a

many-particle system governed by a Hamiltonian H can be written as

ol = o
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or more explicitly,

) w) ")
dF )’aﬁ’ H _F a&} 0

dt % 95 oF of .
We now integrate (1) over the coordinates and momenta of all the
particles except, say, for those particles numbered 1,2,3,...58, where
s <N, thus:
s
4 6{4 FER B
¢ +Z { } d°
f W mm—fﬁ €
A 4 ’aﬁ"”’aa{ ;
*ZH % 9 OF a% ﬁd §
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The last term can be evaluated in!_,(,-space by Gauss's theorem as follows:

ZNﬁf‘%[ R Wd"i NHTT ¢ -as, = 0

=3+ ¢ = S+ 1=5+1 }=S+i

50



/
and
9 9 ) Kyl
. — % 2. —V. + .
w, T tw Y
Consequently,

2 [F—'(S);’M]

To proceed further, we separate the Hamiltonian into two parts, namely,

a non-interacting part Ho and an interacting part V, thus:

N =¥ +V

and Liouville's equation becomes

d ?S) [ F,(S) JV] [V F(S)]

or

ﬁ"S) +Z§ TR, VR, } Z%a\/ oV ’aF(S’}

a? ’ap{' ’aﬁ’ ’ar A af ’blbt o7

We shall use this convenient S-particle distribution function to derive
the famous Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchy for a fully
ionized plasma with Coulomb interaction in the relativistic form as well

as in the non-relativistic form in the following section.
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CHAPTER FOUR

THE BOLTZMANN-VLASOV EQUATION ON THE

BASIS OF THE SELF-CONSISTENT FIELDS

IV-1 Introduction

We shall derive the Vlasov-Boltzmann equations on the basis of the
self-consistent field approximation. In order to gain a deeper insight
into the physics involved, let us consider first the related problem of
obtaining a mathematihally tractable equation frém Liouville's theorem
for the case of a dilute neutral gas. This system is basically different
from a plasma in that the intermolecular forces are short range in con-
trast to the long~-range Coulomb forces in a plasma. For the case of a
dilute neutral gas, Bogoliubov has given a new derivation of the Boltzmann
equation by expanding the solution of Liouville's equation in a power

series in terms of a small parameter C{ which is given by

o =ny’
where n is the particle density, and 78 is the range of molecular force.
For the case of a gas consisting exclusively of neutral particles, the
force range 78 is of order 10-8cm and thus even for densities as large
as 1020 particles per cubic centimeter X is negligible compared to
unity. The magnitude of the expansion parameter (){ may be thought of
as being a measure of the probability that various numbers of particles
will collide simultaneously. Thus, if O is very small compared to unity,

then it is very unlikely that more than two particles will ever suffer a
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simultaneous collision; and, consequently, one expects that the Boltzmann
equation, which allows only for binary collisions, will correctly describe
the system. On the other hand, for liquids where (O( is of order unity,
one expects that the Boltzmann equation can be modified such that three
or four particle-collision terms are considered. Just like the three
body problem in classical mechanics, these multi-particle "collisions"
complicate the analysis enormously and are one of the reasons why a

satisfactory theory of the liquid state is still lacking.

Consider next the possibility of using the binary-collision form
of the Boltzmann equation to describe a plasma. It is easy to see that
Ol will always be very large regardless of the particle density because
the range of the Coulomb force is essentially infinite, and that Bogoliubov's
approach would lead to a divergent power series. In terms of our inter-
pretation of the parameter O{ , this would mean that most of the particles
in the plasma are constantly in simultaneous collision. However, the
physical picture is not quite so because each particle in the plasma is
screened from other particles which are outside the Debye sphere with

shielding radius
%
%:= J@E_

A4mne?

where n is the particle density, e is the electronic charge, and T represents
the absolute temperature of the plasma. It is the Debye radius that should

be used as the range, in the expansion parameter, thus:
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and this shows that on this basis as well, ({ is still very large com-

pared to unity for most physically interesting plasmas. For example,
at a temperature of 105K, as the particle density varies between 1016and 1012
O covers the range from 10 to 1000; consequently, the particles in
the plasma will suffer repeated, multiparticle, and simultaneous collisions
and so the binary-collision form of the Boltzmann equation is no longer
valid for a plasma. This uncomfortable situation might appear frustrating;
however, we shall demonstrate that this simultaneous multiparticle collision
is actually a saving grace for simplifying the theoretical treatment of a
plasma because this is the very basis on which the self-consistent field
method is built. Qualitatively, it is easy to see for a large value of

X, that only if the particles move in a coherent or collective fashion
will a typical particle in the plasma experience an appreciable force.
Furthermore, such forces can be expected to be much more smoothly behaved
functions of space and time than the forces produced by the much rarer
multi-particle "collisions". Thus, to lowest order we could replace all
interparticle forces by microscopically smoothed electromagnetic fields.
Each particle moves independently in the microscopic smoothed electro-
magnetic fields produced by all the other particles, and each particle
has a well defined trajectory just like the independent particle model

of the nucleus in which each nucleon moves independently with a well
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defined orbit in the average potential produced by all the other nucleons.
The independent trajectories of the particles give rise to microscopic
charge and current densities which in turn produce those fields that

will determine the motions of the particles in a self-consistent way.

It will be shown in the next section that this method of solution turns
out to be equivalent to the one obtained by solving for the single-particle
distribution function (from that form) of the Boltzmann equation that is
obtained by omitting the collision term but supplementing the external
force terms in this equation with the smoothed, self-consistent fields.
The fields are obtained by solving Maxwell's equations with charge and
current density expressed in terms of the distribution function, and this
set of equations, namely, the collisionless Boltzmann equation plus the
above described form of Maxwell equations, will be referred to as the

Boltzmann-Vlasov equation from now on.

IV-2 The Boltzmann-Vlasov Equation

The N-particle Liocuville equation is

o +§Z @ﬂ"f@%/_@ﬁ*”’@%} .
ot 3 O, oF Of

N N
i { o " }- {aF‘”)a\/_aF‘”’a\/} ]
dt o, oF °f ) /|3 o of °of

£=1 =1
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where M= %‘i’ \/ is the Darwin Hamiltonian, i.e.

i
E Z Z @(}D(T’t)

F?’ (A r)?(fy)}

T

/a2 2
\/ =__/_ @ /@
2 I??I "2 2mic

=1 #=1 =] §=t

If equation (1) is integrated over the coordinates and momenta of all

of the particles except those for, say number 1, we find

3t opor Onop | |or 94 % OB
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and where the second step
N
W) PN
PO, f=f G
i=1

follows from the independent trajectory Ansatz. Similarly

=2 =1~ =2
~ A TTA Tl = 27T %
=2" (-2 =2

and

To proceed further, we state the following lemmas (these were proven

before):

Lemma 1°
5 [ﬁ-erﬁ’%é’-ﬁ] ZQ[E_L%(?.ir)]
AN o RAR TN
— — — _Z
le =M =% , Ta=|h—x

57




Lemma 2°
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where

/p(@:ﬁa =f(?,)ﬁ)t)f(f{:ﬁ)f) 7= f(ﬁi'ﬁ )

Define

CJ-EI —Qs(ﬂ,f) Nejda d3£% ,ﬁ,? f( z)?;)

2

C}gl = ﬁ(ﬁi) fdgr &, %——‘_‘(& 9‘? zl)ﬁ(%ﬁ,ﬂ

Then we have
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We now change the variables according to

-— > —>
Yi)Pl)t 712)][’.)1/_)
and omit the subscript 1:
o 2 (o PR
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3

where all terms of order —3 have been dropped, and with
C
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CHAPTER FIVE

THE BOGOL IULOV-BORN-GREEN-KIRKWOOD-YVON HIERARCHY

V-1 The B-B-G-K-Y Hierarchy in Non-Relativistic Form

We shall first treat the non-relativistic case, and using the
Darwin Hamiltonian

W =) (=AY /am 4) 9, +—ZZ|
43550 ) [ R

The non-interacting part is seen to be given by
= 1 (p_eR WV
Mo —Z{zm(f’a "E:‘Ai) +e(30i§
and the interacting part is given by
lr 7 = >
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e i |g-%
For simplicity, we consider the Coulomb interaction only, thus:
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Substituting these into the S-particle Liouville's equation we have

s) > e ) s) - —
Y (-2 g L -ET-)

1=
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We now change variables from to Y, U and note that
Y z/ s

Performing the indicated change of variables we obtain the non-relativistic

Born-Green Hierarchy:

63



V-2 The B-B-G-K-Y Hierarchy in Relativistic Form

We have shown in the last chapter that the S-particle distribution

function satisfies the equation

‘ o L ii@ﬂs@}gﬁi_‘s’j} {a\/@ﬁ‘” % 3/7‘5)}
| at L G 25 ORI .

Consider the following Hamiltonian: M= M + %(‘t , where
n
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For simplicity, we again neglect bz}( <5 J,Z P;) . Now
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We can also express the above equation in terms of 47? l& 2f

as follows:

() N N
oF +i{?&-2—hf+% l——’g[E(i;‘)tHé?ix?(%t)—Czl{ EWJ T4 %

We shall derive the Rosenbluth-Rostoker Hierarchy on the basis of this

equation in the next section.
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V-3 The Rostoker-Rosenbluth Expansion, and Corrections to the Boltzmann-

Vlasov Equation

We shall examine more critically the assumptions made in the derivation
of the Boltzmann-Vlasov Equation. The assumption that Liouville's equation
is applicable to the physical system under consideration is hardly open to
question. However, the independent trajectory assumption is not on a firm
basis, and we shall investigate in detail the criteria of validity of this

assumption (i.e., F’(W

=="l§f§ ) as well as explicit corrections to the

3=/
Boltzmann-Vlasov equation.

It is clear by now that in contrast to the neutral dilute gas case,
=T
we can anticipate the Ansatz of independent trajectory (i.e., ==T_r;é )

to be valid provided only that the parameter O , #=!

32

/2
o= 47rez T 7’L

is very large compared to unity. Following Rosenbluth and Rostoker, we
shall expand the solution of Liouville's equation in a power series in
CXT s, and thereby obtain corrections to the Boltzmann-Vlasov equation.
In order that the significant features will not be obscured in a morass
of algebra, we shall consider a plasma that consists of only one species,
with Coulomb interactions and without external fields present. For this

purpose, we shall redefine the S-particle distribution function by the

F(S)(t) VJF_T dékg F—.()(_t

J=5H

formula

66



In terms of this new definition of Fl_'( (t)» equation 5-1 of Section 1

can be cast into the form

s) ,a/?(S)
@ﬂ *Z }ii Y

t=! j=1

'n@Z s+1)
Zjdg dg%)5+/ g5+’ TF_‘(

One procedure, which is equivalent to making a power series expansion

—1
in terms of O{ , involves taking the limits (i.e. the fluid limits)

C—o0 ne
m ——>0% and LM, § remain finite
4 s e
NEAS— - L
y e "

and write

)

(s)
/;‘v _ /"—; + F—,l(S)

(5) -1 (s)
where /E: is of order X relative to F . On substituting this

assumed form for 711_7 into equation ( ), we obtain

S) £ ) (S+H)
W 2
F! § 15 a-f + he S dafs-w El S+ ofs =0

L 14 GITA
) = s) (S+/)
I Z—) oL 3P
gtl +z‘—/UE.5%— z:/fd d)bSHESH ——f-
2 2 !/ s (5)
ta) Yy Bt
I v
2=l j=1 ‘
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We note that in the lowest order of approximation frz (i.e., the

S-particle distribution function in the zeroth order of approximation),
O{—>00 , so all of the particles in the plasma are within a Debye radius
of each other and consequently no particle is shielded from the Coulomb
field of any other one. Thus, each particle experiences forces due to
all of the other particles in the plasma, and the few-particle collisions
are completely negligible compared to the Coulomb forces produced by the
overwhelmingly large number of particles without shielding. 1In this

approximation, we may assert

S
R =11 £%.%.

where :f; is the single particle distribution function in the 1limit X—00,
Although this assumption is very similar to the Ansatz of independent
trajectory, it is on a completely different basis. Since in the present
formulation, the approximation of }"—é(S)= ﬁ]ﬁ(fﬁ)‘t} is only the first
term in a power series of CXTI, for whicﬁshigher-order corrections can
be obtained in a systematic way; while on the other hand the assumption
of independent trajectory used in connection with the derivation of the

Vlasov-Boltzmann equation (from Liouville's theorem) implies no further

corrections.

The equation satisfied by f; is clearly given by
S / 2 —_—>
> 2 .= d nesl 43 3 > .
Z{ [W ﬁ”’; Vat)][_a? +vzé§_’» T -—%—/d §+/d 7@+/][0(§+vf’s+/»ﬂh‘i,$+'

—a—}fo(?ﬁ. 7 t)§=o

68



So that
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The first order correction to the Vlasov-Boltzmann equation can

be obtained by considering the solution of the equation

K3

S
3 .0 F 8  ne 3 3, B .9 plstl)
a/-? +Z/U:7?Zr i mz/fd §+,d@+,E17S+, a{;—’ih—'l
= =
e /——> )
AT
7= j=1

Consider first the simple case of a two-particle distribution

(2
function F’ )( —,),—>, 7?1;7‘{7:7 )

@ _ Wf (%,t) = L,00, 80 f,(0, 1) Xi= (T, T)

l I
)
[:'(2 =[fo(x,)t) + Efl (x, t )J[Ji(xz)f) + éf(&)fh EP(X,,?(:,H}

+ ]i(?&,'t)P( Xy Xe, t)} + O(Ez)
PP rern’+ EF7 e-00E)

Y = fonf () + f(x £)F 0, t) + L0 P11
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This example suggests that we may try the Ansatz (for lst order correction

of S-particle distribution)

Pl(s) :i{ | ‘ ]C(x t)}f(x tHZZZ-P(X,XJ;T){' '//J(O(Xé,f)}

i=1 = 1= 101— #=1

where the primes and double primes mean omit the terms {= f , and i: £,

d{ = %, respectively.

The equation satisfied by fl and P can be obtained by straight-
forward substitution of the above Ansatz into the equation

(s)
satisfied by Fl for the two special cases of S =1, and § = 2.

For the case S = 1, we obtain

2 .0 elg. 2 .2
ggf,(x,t)Jer'g-;Ifl +m[lﬂ —-7][l+fia_>qfoJ

0 81)]
2 = .23

where
E(3t) = - n@/ﬁr’a@v’]ﬁ( [ AR DF-

b4 = — 3’3 / 2/ 5/ _Q__._L_.__
Ei(r,t) ne/drdvjf(r)ir)f)a? e
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For the case S = 2, we obtain

O, > 2 .0 B e VRN R - PN
T Et hs m[Ei(r,,waﬁf BTt JP(mznt)
ne* ni

+ 4| APy Py b, Plxa, 2t )-3 j[(X,)T) + (< —>2)
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e~ =
—i_')_’ﬂ/— j((xf)-t)Ez1 —>

5o o e, 1)+ (l——2) =

™

where (1€ —2) means repeat the preceding term but with the subscripts 1

and 2 interchanged and where t}' is given by
_»
——>E, _ /R
i AT =) T .
s -k

V-4 Summary

The development of plasma dynamics has followed two different
approaches. The approach we presented here so far follows that of Born-
Bogoliubov-Green-Kirkwood-Yvon, and Rostoker-Rosenbluth. 1In this
formalism, Liouville's equation is first integrated in terms of the
S-particle distribution function, (S (< N) and the result is the
familiar B-B-G-K-Y Hierarchy which relates the S-particle distribution
function to the (S5+1)-particle distribution function. Rostoker and
Rosenbluth have developed a series expansion in terms of the parameter

~
(X (where X = 77,8 8 /7;:'%2_ ) by taking the fluid limit. We
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have seen that the lowest order of approximation in the fluid limit
gives the Vlasov equation, and the Cincorrection is given by Eq. 5-3-]
in terms of two particle correlation function. Another approach is
that due to Prigogine, Balescu, etc., of the Belgian school. These
authors also start their analysis from Liouville's equation; however,
in contrast to the approach we have followed, they first integrate the
many particle Liouville's equation by the method of Fourier analysis
and Green's functions. The solution of this N-particle Liouville
equation is then expanded by a diagramatic method similar to that used
in field theory and virial expansions. The few-particle distribution
function is obtained by integrating the solution of the N-particle
Liouville equation. The generalization to include quantum effects is
done by using the Von Neumann density matrix and Wigner representation.
The first order perturbation calculation by using the diagramatic method
gives the Landau form of the Fokker-Plank equation, which is obtained
by the replacement of the zero on the right-hand side of the Vlasov
equation with a collision term. These Fokker-Plank terms are not
associated with the smoothed-out microscopic fields already included
on the left-hand side of the Boltzmann-Vlasov equation, nor are they
associated with the violent, close-encounter binary collisions usually
described by the Boltzmann collision integrals. But rather, these
Fokker-Plank terms are based on a mechanism that lies between these
two (i.e. the discrete nature of the close-encounter collisions and
the continuum nature in the fluid limit). The mechanism for these

distant-encounter collisions (Fokker-Plank terms) may be interpreted
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as producing changes in the distribution function as a result of gradual
alterations in the particle trajectories due to many small-momentum-
transfer or large-impact-parameter (and hence small angle) scatterings.
Since such scatterings can occur only for particles within a Debye
sphere, it is clear that the Fokker-Plank equation is equivalent to our

(X corrections. This equivalence has been demonstrated by Bernstein

and Trehan.
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